Every apple (except for the 1’s) pairs up with a duplicate in color and number. Connect the pairs with a color coordinated path through cells that travels horizontally and/or vertically. The length of the path, including the apples at each end, is the same as the number at each end. Paths cannot cross other paths. This puzzle is interactive.This puzzle has an online interactive solver.
{
"data-text-replacements": { "J": 10, "K": 11, "L": 12, "M": 13, "N": 14, "O": 15, "P": 16, "Q": 17, "R": 18, "S": 19, "T": 20, "U": 21, "V": 22 },
"data-text": [
".......218.....221Q..33.71......",
"....1..2........4...3J.3.73.....",
"....1.7J.2........6.............",
"....379..2........22K.....3.....",
"................4622.K..222.....",
"....3.............3.....112.....",
"...1....8...........1...922.....",
".....1............3.............",
"...933J1111...3.1.Q....J.7......",
"...3..1223.33.331221221..1......",
"...213722111221.6.31221..7......",
"...21..22.15.....3K53.3181......",
"....1.411..3.35..1....56..9.....",
"....2..............1..1...1.....",
"....2.242...6...46..1K....1.....",
".....72129...3...L..1....8......",
".....2P11...36...1....6..4......",
".....2....7.7.P.4..231..........",
"......1...9.22.11..2.3L4........",
"......1...22...3.3...4...4......",
".............214..41.L1L........",
".......1423.32...225.122........",
".........2J..1..11.4.J..N.......",
".........42.225.54.5.....L1.....",
".........12..13.322.7......11...",
"........15.1....J111...3.3...1..",
"........5..111.4..4....P.....L11",
".......1..16...118.......57...NN",
".....11....6....11..7........22.",
"....1V..22..122...3........P....",
"..18......8.1.22...3.......7....",
"11V.........1.3.3.118J..N5....44"
],
"data-fills": [
".......321.....1132..23.42......",
"....2..3........1...23.3.41.....",
"....3.42.1........1.............",
"....243..1........232.....1.....",
"................1123.2..332.....",
"....2.............1.....242.....",
"...1....1...........2...433.....",
".....4............1.............",
"...32321331...1.1.2....3.4......",
"...2..3223.32.212334334..3......",
"...143231434331.3.43443..4......",
"...13..31.12.....4223.3242......",
"....2.313..1.12..3....23..4.....",
"....1..............1..2...3.....",
"....1.131...1...23..12....1.....",
".....21211...2...4..2....4......",
".....1212...21...3....3..2......",
".....1....1.1.2.2..323..........",
"......2...1.33.23..3.243........",
"......1...33...3.3...3...2......",
".............332..24.434........",
".......1232.23...112.322........",
".........32..1..32.3.4..4.......",
".........23.112.23.2.....41.....",
".........23..21.122.4......32...",
"........12.3....2312...4.4...1..",
"........2..131.2..2....4.....432",
".......1..12...134.......44...44",
".....12....2....13..4........44.",
"....24..44..322...2........4....",
"..24......4.2.22...2.......4....",
"134.........3.1.1.2344..44....44"
]
}